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bstract

n some glasses during thermal annealing, nano crystals are formed, which scarcely grow with time and exhibit a very narrow crystal size distribution.
n this paper, considerations on the crystallite size distributions are given. A variant of the nucleation theory including the role of an induction
eriod is included in the model. Since non-isochemical systems are considered, the oversaturation is decreasing with time and therefore a model
s chosen according to which the nucleation rate decreases. For the crystal growth velocity, a model recently derived was used which takes into

ccount the stresses formed during the course of the crystallization process. It is found, that a model taking into account decreasing oversaturation,
n induction period as well as the occurrence of stresses fully explains the crystallite size distributions experimentally observed which might even
e narrower than those according to the theory of Lifshitz, Slyozov and Wagner.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

Glass-ceramics often exhibit challenging properties, such
s low thermal expansion coefficients which enables their uti-
ization for various purposes, such as for cook-top panels or
s telescope mirrors.1,2 They are also valuable materials for
umerous photonic applications. In some cases, it is possible to
recipitate crystallites with mean sizes in the nm-range and nar-
ow size distribution. This enables the preparation of transparent
lass-ceramics3 which might be used for numerous photonic
pplications. Recently it has been experimentally shown that
he crystallite size distribution4 may even be narrower than that
ccording to the well known theory of Lifshitz, Slyozov and
agner (LSW-theory).5 This theory was developed for diluted

uspensions and considers an asymmetric size distribution after
oarsening by Ostwald-ripening.5
Nucleation and subsequently growth of crystals in a glass
orming melt has been a challenging topic over the years, mainly
ue to a very large number of models and approaches that have
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E-mail address: christian.bocker@uni-jena.de (C. Bocker).

c

u
T
c
e
t

955-2219/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jeurceramsoc.2011.07.008
een developed in the effort to better understand the microscopic
echanisms of growth in detail.6–8 Recently, a new model was

uggested combining ideas from percolation theory and the glass
orming ability of silicates.9–14 Most glass forming systems con-
ist of networks in which the network formers, NF, are connected
ith oxygen bridges. The network is “floppy” or “rigid”, depend-

ng on the number of broken oxygen bridges (NBO) per NF.
ccording to the theoretical model developed by Thorpe and
hillips (see e.g. Refs. [15–20]), as well as from experimental
bservations,9–12 the threshold number for the floppy-to-rigid
ransition is NBOc/NF = 1.6 for glasses composed of network
ormers with a coordination number of 4. If NBO/NF is less than
his critical value, the network is “rigid”. However, in “rigid”
etworks there are still some tiny “floppy” regions. It has been
hown, that the exact threshold conditions for the rigid/floppy
ransition depend on the dimensionality of the space and on the
oordination number.20

Recently, Monte Carlo Simulations were carried out to sim-
late the crystallization process in multicomponent systems.21
he basic starting assumption was that during the course of the
rystallization process, stress energy is developed, which decel-
rates crystal growth. At a first stage, nuclei are formed inside
he “floppy” regions of the glass. The size and concentration

dx.doi.org/10.1016/j.jeurceramsoc.2011.07.008
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L(ta − t) ≈ LS

(
ta − t

τR
+ (1 − e− ta−t

τD )

)
, (4)

with the parameter LS regarding the size of the crystal at that
862 C. Bocker et al. / Journal of the Europ

f these floppy regions in a rigid matrix is a type of percola-
ion problem. It was further expected that the crystal could grow
elatively fast until the entire “floppy” region is occupied. Fur-
her crystallization has to propagate inside the “rigid” region
nd it is to be accompanied by stress development. This is of
articular importance if the chemical composition of the grow-
ng crystal is different from that of the ambient phase. Viscous
elaxation could reduce, or even eliminate, the inhibiting effect
f elastic stresses.4 Hence, in most cases the effect of internal
tress is neglected. The common argument is that stress energy
s relaxed too fast to affect crystal nucleation or crystal growth.
f the two scales (of growth rate and of relaxation rate) are com-
arable, the stress energy, however, will not have enough time
o dissipate completely during the course of the crystallization
rocess. Although the relaxation time is long at the glass tran-
ition temperature (around 60 s), the crystallization time is long
s well. On the other hand, at elevated temperatures, the relax-
tion time is short, however, the crystallization time might also
e short. Therefore, during the crystallization, residual stress
nergies cannot be neglected ad hoc.

In the present work we combine the nucleation theory includ-
ng an induction period with a model taking into account

decreasing driving force for the nucleation process due to
ecreasing oversaturation as well as a crystal growth velocity
hich decreases with time. This enables to conclude on the crys-

al size distributions. It is shown that the formation of stresses
uring the course of the crystallization leads to much narrower
rystal size distributions than those expected by the LSW-theory.

. Theoretical models

In numerous papers, it has been reported that nucleation rates
ight depend on time.22 While in a first stage, the nucleation

ate is fairly small, it increases with time and finally approaches
constant value. After some time, the nucleation rate reaches
constant value, the steady state; earlier states are non-steady

tate. The time required until the number of nuclei increases
inearly with time is frequently called the non-steady state time
ag. The first theoretical description was given by Zeldovich:23

= Iss exp
(
− tc

t

)
(1)

ith tc, characteristic time scale; I, nucleation rate; Iss, steady
tate nucleation rate.

In an ideal isochemical system, (the crystal precipitated has
he same chemical composition as the melt), the crystal growth
elocity once a steady state is reached does no longer depend
n time. However, if the system is not isochemical and the
rystallizing component has a larger concentration, then also
he nucleation rate can no longer be considered as constant. In
umerous reports on nucleation and crystallization in the field of
etals and alloys24–26 the problem of decreasing concentrations
f the respective crystal forming components, i.e. decreasing
versaturation, is taken into account. This leads to a decreasing
riving force for the nucleation process and hence to decreasing
ucleation rates. According to Refs.,24–26 Eq. (2) describes the
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d
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ucleation rates in non-isochemical systems taking into account
he induction period:

= I0 exp

[
−A

(
ln

c(t)

ce

)−2
]

exp
(
− tc

t

)
(2)

ith I0 exp

[
−A

(
ln c(t)

ce

)−2
]

= Iss, where I0 is a numerical

onstant, A is a parameter related to the energy barrier for nucle-
tion, c(t) is the concentration as a function of time and ce is the
quilibrium concentration, i.e. that concentration below which
rystallization does not take place.

In the following, the oversaturation, i.e. concentration as a
unction of time, is decreasing due to crystallization. The forma-
ion of the crystalline volume fraction was assumed to obey the
ohnson–Mehl–Avrami–Kolmogorov (JMAK) theory of phase
ransformation:27–31

(t) = cin + (ce − cin)

(
1 − e

−
(

t
τA

)n
)

, (3)

ith cin as the initial concentration of the crystallizing com-
onent, characteristic time τA determines the time law of
ecreasing oversaturation and the Avrami parameter n.

Then the nucleation rate shows an exponential decay
ttributed to decreasing concentration of the crystallizing com-
onent.

In general, the distribution of crystal sizes is controlled by
hree processes: the linear growth rate, the nucleation rate and
he process of Ostwald ripening. In the present treatment the
hird process, Ostwald ripening, will be neglected. This is a rea-
onably good assumption for the early stages of crystallization
s well as in the case of stopping crystal growth of the nano
rystals due to the formation of a stress field near the interfaces.

The case when the relaxation time of the stress field τR could
e different from the time τD, that building units need to attach
o the crystal, was studied in Refs.21 and.32 Recently it has been
hown using Monte Carlo simulations that the crystal growth
elocity depends on time.21 By analogy, theoretical consider-
tions taking into account stresses formed during the course
f the crystallization process also resulted in nucleation rates
hich decrease with time. Using the results from Ref.,32 it can
e shown that in this case, after annealing time ta at constant
emperature, the crystal that is formed at moment t has a size L
s follows:
oment when crystal growth starts to be dominated by the
tresses formed, τR is the relaxation time of the interface matrix
iffusion zone and τD is the time of the diffusion controlled
rowth in the beginning.



C. Bocker et al. / Journal of the European Ceramic Society 31 (2011) 2861–2866 2863

a b

F luted s
g

3

f
t

D

w

U

c
t
f
t
t

a
t

U

H
t
t
r
n
s

c
t
c
i
d
d

r
f
t
e

s
e
s
i
u
i
i
r
a
d
u
s
t
a
t
r
t
c
c

r
c
m
a
i
u
w
i
a
c
r
a
t
a
f
i
e
i
s

ig. 1. Nucleation rate and oversaturation for non steady state nucleation in a di
rowth velocity (b).

. Results

In the following, crystal size distributions D(L) are calculated
rom the derivative of the number N(t) = ∫ t

0 I(x)dx of crystals
o the size L(ta − t) = ∫ ta

0 U(x)dx:33,34

(L) = I(t)

U(ta − t)
(5)

ith the crystal growth velocity U(ta − t)

(ta − t) = LS

(
1

τR
+ 1

τD
e

ta−t
τD

)
. (6)

Note that the nominator in Eq. (5) is a function of t (because it
ounts for the number of nuclei formed in this moment), while
he denominator is a function of ta − t (because it counts the
urther development of these nuclei). Subsequently, the size dis-
ributions were normalized in order to obtain a maximum equal
o unity.

First, the most simplified case is considered where the nucle-
tion rate is constant, i.e. does not depend on time I(t) = ISS and
he crystal growth velocity is constant:

(ta − t) = USS = d0

τ
(7)

ere d0 is the intermolecular distance in the crystal and τ is the
ime for which the crystal front propagates to this distance. In
he following, this model is denoted as model A. As a trivial
esult, the size distribution is also constant. There is a constant
umber of crystals at any size between zero and the maximum
ize obtained during the annealing period.

In the next model (model B) it is taken into account that the
oncentration of the crystallizing component is a function of
ime. In multicomponent glass systems where one component is
rystallized, the matrix surrounding the crystal will be depleted
n the crystal forming units. Therefore, the concentration will
ecrease with time and the driving force for nucleation will also
ecrease due to the decreasing oversaturation.

In Fig. 1(a), the concentration and the resulting nucleation

ate are shown as a function of time. The time scale was set
rom 0 to 1000 arbitrary units. As parameters for the concentra-
ion profile, the initial concentration cin was set to one and the
quilibrium concentration ce to 0.1. The Avrami parameter n was

(
a

ystem (a) and the resulting crystal size distribution assuming a constant crystal

et to four which is attributed to a three dimensional growth,31

.g. observed in a cubic system. The characteristic time tA was
et to 500 in arbitrary units in order to obtain an observable effect
n the chosen time interval. For the nucleation rate I0 was set to
nity and tc to zero. It should be noted that in this model, an
nduction period does not occur and the crystal growth veloc-
ty does not depend on time. It can be seen, that the nucleation
ate starts to decreases after approximately 400 time steps and
pproaches zero at time point 650. In Fig. 1(b), the crystal size
istribution is shown. Crystals smaller than about 350 arbitrary
nits do not exist, because according to the nucleation rate curve
hown in Fig. 1(a) after a certain time limit, practically no fur-
her nuclei are formed, and hence crystals which grew only for

comparable short time are not observed. On the other hand
here is a large number of large crystals because the nucleation
ate at the beginning is maximum and these crystals grew for
he longest time and hence to the maximum size. Practically, the
rystal size distribution is similar to the mirrored nucleation rate
urve because of the linear assumption of the crystal growth.

In some multicomponent glass systems, the crystal size
emains nearly constant after a certain time. This is due to a
rystal growth velocity which decreases with time. The next
odel (model C) includes decreasing oversaturation as well as
time dependency of the crystal growth velocity as described

n Eq. (4). Fig. 2(a) shows the crystal size as a function of time
sing Eq. (4). Here, the ratio of τR/τD was varied. The time τD
as kept constant (100 time arbitrary units), while τR was var-

ed from 200 to 5000 time units. The size LS was set to unity. In
good approximation, the crystals grow rapidly with a nearly

onstant crystal growth velocity until a certain crystal size is
eached. Then increasing stresses are formed, which deceler-
tes further crystal growth. The latter leads to a decrease in
he crystal growth velocity which, however, approaches another
pproximately constant value. By using the same parameter set
or concentration and nucleation rate as in Fig. 1, the result-
ng crystal size distributions are shown in Fig. 2(b). Each graph
xhibits a maximum, the curves are getting much steeper with
ncreasing the ratio τR/τD from 2 to 50 and the maximum is
hifted to smaller crystal sizes.
In models A to C, the second term in the Zeldovich-equation
Eq. (2)) was neglected. So far, the nucleation rate did not show
n induction period. In model D, the variation of parameter tc
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a b

Fig. 2. Linear size L of the cluster versus time for different relaxation times. For τR/τD = 2 (solid line), 5 (dashed line), 10 (pointed line), 20 (dash-dotted line) and
50 (dash-double dotted line) (a) and the resulting crystal size distributions (b).
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ig. 3. Nucleation rate in a diluted system with tc = 0 (solid line), 10 (dashed lin
nd the resulting crystal size distributions with linear crystal growth (b).

as taken into account while a constant crystal growth rate was
ssumed. In Fig. 3(a) nucleation rates are shown as a function
f time while the parameter tc was varied from zero to 1000. For

c > 0, the nucleation rate exhibits a maximum which gets nar-
ower with increasing tc. The resulting crystal size distributions
re shown in Fig. 3(b). It is seen, that the crystal size distributions
xhibit a pronounced maximum when tc increases and the width

f the curve decreases with increasing tc. The maximum crystal
ize is shifted to smaller values with increasing tc and it should
e noted that at larger tc the curve shows a log-normal shape.

ig. 4. Crystal size distributions when tc in the nucleation rate is 0 (solid line), 10
dashed line), 100 (pointed line), 500 (dash-dotted line) and 1000 (dash-double
otted line) and the crystal growth according to equation 4 with τR/τD = 50.

l
d

F
t

0 (pointed line), 500 (dash-dotted line) and 1000 (dash-double dotted line) (a)

In Fig. 4, the models C and D are combined to model E. Again
c is varied from zero to 1000 but in comparison to Fig. 3(b) the
rystal growth is a function of time according to Eq. (4) with
he parameters τR/τD = 50. It is seen, that only small crystals are
bserved which possess a very narrow size distribution slightly
bove the set parameter of LS with unity. There are no crystals
maller than approximately one arbitrary unit and no crystals

arger than 1.2 arbitrary units. It should be noted that the size
istribution approaches a Gaussian shape when tc increases.

ig. 5. From TEM-micrographs experimentally obtained crystal size distribu-
ions of BaF2 crystals in the glass system Na2O/K2O/Al2O3/SiO2/BaF2.
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. Discussion

In the numerical simulation of the crystallization process,
he following effects were taken into account: (1) decreasing
versaturation during the course of the crystallization process,
2) a crystal growth velocity which decelerates with time and
3) an induction period of the nucleation process.

If all three effects were not taken into account (model A),
he number of crystals for any size is equal up to a maximum
alue and then is equal to zero. If the decreasing oversaturation
s taken into account (model B), the number of crystals increases
ith increasing size and then approaches a nearly constant value
ntil a maximum crystal size is reached (see Fig. 1(b)). Crys-
als larger than attributed to this maximum value do not exist.
f a crystal velocity is taken into account which after reaching
certain value, decreases with time (model C), the number of

rystals increases first exponentially and then goes into satura-
ion until a maximum is reached. If an induction period is taken
nto account and the crystal growth velocity is constant (model
), an approximately exponential increase is observed for crys-

al sizes smaller than the maximum. Then it decreases again
nd approaches zero. Crystal sizes below a certain limit practi-
ally do not exist. The curves show approximately a log-normal
hape which is reported for some nano particles instead of the
SW-function.35,36

In the literature, experimental studies on the crystal size
istribution of crystals with sizes in the nanometer range are
carcely reported. Nevertheless, in Ref. [4] crystal size distribu-
ions of BaF2 nano crystals from an oxyfluoride glass system are
eported. They were experimentally obtained using transmission
lectron microscopy.4 This system represents a multicompo-
ent and non-isochemical system. Using X-ray diffraction, it
as been shown from the line broadening that the crystals in
his system and similar ones do scarcely grow with time. In
he initial state of the crystallization process, the glass transi-
ion temperature of the residual glassy phases increases until the
ransition temperature and the annealing temperature are equal.
n those systems, the crystallite sizes are usually in the 5–20 nm
ange.4,14,37

In Fig. 5, the size distributions of the three samples from Ref.4

fter annealing at different temperatures and for different times
re shown. The number of crystals is normalized to unity. It is
een that the size distributions are fairly narrow and as shown
n Ref.4 may even be narrower than that according to the LSW-
heory. Their Gaussian shape fits best with model E where all
hree effects are taken into account. It can hence be concluded
hat the model introduced may fully explain the narrow size
istributions observed in glass-ceramics containing BaF2 nano
rystals.

. Conclusion

The nano crystallization in multicomponent glass systems is

xplained by a model that takes into account a decreasing over-
aturation as well as an induction period during the nucleation
rocess and their effects on the nucleation rate. Furthermore, the
rystal growth rate is a function of time which is in agreement to
eramic Society 31 (2011) 2861–2866 2865

xperimental observations in some oxyfluoride glass-ceramics.
y means of numerical calculations, crystal size distributions

or various parameters of the nucleation rate and crystal growth
elocity are obtained. From the trivial case with a constant nucle-
tion rate and crystal growth velocity to the time depended case,
he crystal size distributions are calculated. It is shown, that with
ncreasing relaxation time of the matrix during the crystallization
nd hence hindered in crystal growth, the crystal size distribu-
ions become narrower and finally similar to a curve of Gaussian
hape. This model explains the formation of nano crystals with
Gaussian crystal size distribution that is even narrower than

he LSW-theory predicts.
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